C-RAN: The Road Towards Green Radio Access Network

Bill Huang
GM of China Mobile Research Institute
2012 MWC, March 1
Agenda of Today

- Why C-RAN is Important to Mobile Operators?
 - Cost, performance and industry trends

- What’s the Next Big Thing after LTE?
 - Network implementation evolution

- How do We Drive C-RAN in the Future?
 - Joint requirement, R&D, and deployment
NGMN Paved the Way of LTE in the Past Years

NGMN played an important role in LTE
- Operators defines requirement jointly and drive the industry
- Market drives technology innovation
- Global standard, global market and global economic scale

What will the next big thing after LTE?

Source: NGMN Alliance Highlights and Beyond, Dr. Peter, 2011
Operator still has Challenges in Mobile Internet Era

A green evaluation path is needed for Radio Access Network deployment and operation, to achieve high capacity, high power efficiency, and low cost.

- **Power consuming surging as BS number increases**
 - [Graph showing the increase in number of BTS and power consumption over years]

- **CAPEX and OPEX associated with cell sites**
 - [Diagram showing components of CAPEX and OPEX]

- **Dynamic network load challenge**
 - [Graph showing load/EBR over time for Office Area and Residential Area]

- **BS cell site is the major source of power consumption of China Mobile**
 - [Pie chart showing power consumption sources: Cell Site (72%), AC (40%), Major Equipment (51%), Other Site Support Equipment (5%), Channel (6%), Management Office (7%), Transmission (15%)]

- **Fast increasing data traffic but slow revenue growth**
 - [Graph showing data traffic growth and revenue growth over time with mobile data explosion and voice-dominated traffic]

- **60% TCO**
 - [Breakdown of TCO components: O&M, Site Rent, Civil Work, Site Acquisition & Planning, Transmission, BTS, OPEX over 7 years]

- **40% TCO**
 - [Breakdown of TCO components: BTS, Site Acquisition & Planning, Civil Work, Site Rent, O&M, Electricity, OPEX over 7 years]
Network Implementation will be the Next Focus
C-RAN: Centralized, Collaborative, Cloud, and Clean System

Centralized Control and/or Processing
- Centralized processing resource pool that can support 10~1000 cells

Collaborative Radio
- Multi-cell Joint scheduling and processing

Real-Time Cloud
- Target to Open IT platform
- Consolidate the processing resource into a Cloud
- Flexible multi-standard operation and migration

Clean System Target
- Less power consuming
- Lower OPEX
- Fast system roll-out
Agenda of Today

- What’s the Next Big Thing after LTE?
 - Network implementation evolution
- Why C-RAN is Important to Mobile Operators?
 - Cost, performance and industry trends
- How do We Drive C-RAN in the Future?
 - Joint requirement, R&D, and application
Centralized Deployment Helps Cost Structure

Lower CAPEX and OPEX
Save up to 15% CAPEX and 50% OPEX compared to distributed BTS 3G network*

Faster system roll out
Due to simpler remote radio site, system roll out can save up to 1/3 the time*

Lower energy consumption
Save up to 71% of power compared to traditional RAN system*

*Source: Base on China Mobile research on commercial networks
Collaborative Radio Further Improves Performance

Interference has become the major limit
E.g. in big cities of China, the distance between BTS is just 100~200m, and interference become a serious challenge

Collaborative Radio is the Ultimate Solution
Change the interference to useful signals
Make better use of TDD channel reciprocity

Source: China Mobile simulation results on 3GPP assumptions
IT Technology Helps Telecom Evolution

IT Technology Evolution
- Huge IDC, advanced server network technology
 - Cheap device, high BW, high reliability
- IT in Core Network: Soft switch based on GPP
 - 40 server = 10M line core network switch
- Open platform, VoIP etc
 - Replaced the proprietary systems

Traditional Switch Solution
- Proprietary hardware + embedded software
 - ASIC, 8086,
- Very expensive (used to be)
 - 2000 Yuan per line in 1990s
- High OPEX, and low flexibility
 - Dedicated equipment room, closed S/W env.

Today’s Soft-switch Solution
- Standard IT hardware + software switch
 - IA platform, standard OS
- Low cost
 - Far below 100 Yuan per line
- Simple OPEX, high flexibility
 - 10 times less room occupation with <30% energy consumption (*)
Agenda of Today

- What’s the Next Big Thing after LTE?
 - Network implementation evolution

- Why C-RAN is Important to Mobile Operators?
 - Cost, performance and industry trends

- How do We Drive C-RAN in the Future?
 - Joint requirement, R&D, and deployment
NGMN Plays an important role in driving C-RAN in industry
P-CRAN project approved in March, 2011, with 12 operators approve
Active participants of 5 major operators and 7 major vendors

Delivered:
“Cost Analysis method”, one motivation of operator to drive C-RAN
“System Requirement”, the general requirement from operator perspective of C-RAN features

TODO:
“Solution Suggestions”, under working – views of potential solutions of future C-RAN system
“Standard Impact Analysis”, under going – impact to 3GPP, ORI and other standards
Joint R&D on C-RAN with TEM/IT Partners

- IT based wireless platform opens the door to more flexible system

2G/3G terminal

4G test terminal

2G/3G/4G RRU

CPRI

Today: Tri-mode BBU on IT Platform

- CMRI and Huawei, Intel, IBM, and ZTE have built two independent C-RAN PoC which realized LTE PHY processing in real time
- 2G/3G/4G RAT verified on IT platform Successful OTA demo in 2011 ITU Telecom World, Geneva
- Base of future LTE-A CoMP research & trial

Future: Large Scale, Real Time BBU Pool

- Build telecom grade reliable (99.999%) real-time Cloud with cheap building blocks with relatively low reliability (99.9%)
- Scalable, Reliable, and Cost Effective system
C-RAN Trials in Commercial Networks

- for dense urban city, business street and campus; well suit for HetNet deployment

C-RAN has shown advantages in places with fiber:

Suitable for these deployment scenarios:
- HetNet deployment in the following areas:
 - Urban city’s business street
 - University campus
- Suburb deployment

Changsha C-RAN/2G Network
- 10 sites, 247 GSM/EDGE carriers
- Dynamic resource allocation

Changchun 2G Network
- Dense city – college campus case
- 5 centralize device room, 98 RRHs
- 30,000 subscribers in 3 km²

Guangzhou C-RAN 3G/4G Dual Mode
- First dual-mode case
- Same BBU-RRU for 3G/4G network
- 12 sites, 36 LTE 20MHz carriers

Zhuhai C-RAN/3G Network
- First in China Mobile network
- 18 sites first, expend to 100 sites
Centralization Deployment
First step of C-RAN centralization trialed in 2G/3G in 7 city’s networks

Near Term:
Address the fiber resource and management challenge

Mid-Term:
Address the SDR and Collaborative Radio challenge

Long Term:
Address the real-time cloud challenge

We are here

Virtual BTS on real-time Cloud
Large scale BBU pool
Real-time virtualization
System OS, API standardization

Multi-mode and Collaborative Radio
Drive the industry to do research and prototype:
SDR on open platform, Collaborative Radio

Drive CoMP research and field trial, pre-commercial product

Commercial product development

C-RAN Research
Data traffic analysis
BBU pool research

Expend C-RAN to 2G/3G/4G networks

We are Driving C-RAN R&D as Planned
Industry Alliance to Drive C-RAN Eco-system
- Through NGMN P-CRAN Project and global industry collaboration

Call for Joint Exploration!

CMRI-IBM signed MoU on multi-mode SDR PoC
Signed C-RAN MoU with Ericsson and NSN
NGMN C-RAN Project drive by CMCC
Collaboration with KT and SKT

Cooperate-level strategy collaboration on C-RAN
Signed C-RAN MoU with Orange
Strategy collaboration with Alcatel-Lucent
Close collaboration with Huawei and ZTE